Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest.

نویسندگان

  • Stanford J Kwang
  • Sean M Brugger
  • Arthur Lazik
  • Amy E Merrill
  • Lan-Ying Wu
  • Yi-Hsin Liu
  • Mamoru Ishii
  • Frank O Sangiorgi
  • Michael Rauchman
  • Henry M Sucov
  • Richard L Maas
  • Robert E Maxson
چکیده

The neural crest plays a crucial part in cardiac development. Cells of the cardiac subpopulation of cranial neural crest migrate from the hindbrain into the outflow tract of the heart where they contribute to the septum that divides the pulmonary and aortic channels. In Splotch mutant mice, which lack a functional Pax3 gene, migration of cardiac neural crest is deficient and aorticopulmonary septation does not occur. Downstream genes through which Pax3 regulates cardiac neural crest development are unknown. Here, using a combination of genetic and molecular approaches, we show that the deficiency of cardiac neural crest development in the Splotch mutant is caused by upregulation of Msx2, a homeobox gene with a well-documented role as a regulator of BMP signaling. We provide evidence, moreover, that Pax3 represses Msx2 expression via a direct effect on a conserved Pax3 binding site in the Msx2 promoter. These results establish Msx2 as an effector of Pax3 in cardiac neural crest development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pbx1 functions in distinct regulatory networks to pattern the great arteries and cardiac outflow tract.

The patterning of the cardiovascular system into systemic and pulmonic circulations is a complex morphogenetic process, the failure of which results in clinically important congenital defects. This process involves extensive vascular remodeling and coordinated division of the cardiac outflow tract (OFT). We demonstrate that the homeodomain transcription factor Pbx1 orchestrates separate transcr...

متن کامل

Transcriptional regulation by Pax3 and TGFbeta2 signaling: a potential gene regulatory network in neural crest development.

Pax3 regulates neural crest cell migration and is critical during neural crest development. TGFbs modify neural crest cell migration and differentiation. TGFbeta2 nullizygous embryos (TGFbeta2(-/-)Pax3(+/+)) display open neural tube and bifid spine, whereas in wild type embryos, the neural tube is closed. In previous work, we have demonstrated that Pax3 regulates TGFbeta2 by directly binding to...

متن کامل

Migration of cardiac neural crest cells in Splotch embryos.

Pax3 encodes a transcription factor expressed during mid-gestation in the region of the dorsal neural tube that gives rise to migrating neural crest populations. In the absence of Pax3, both humans and mice develop with neural crest defects. Homozygous Splotch embryos that lack Pax3 die by embryonic day 13.5 with cardiac defects that resemble those induced by neural crest ablation in chick mode...

متن کامل

Pax3 Stimulates p53 Ubiquitination and Degradation Independent of Transcription

BACKGROUND Pax3 is a developmental transcription factor that is required for neural tube and neural crest development. We previously showed that inactivating the p53 tumor suppressor protein prevents neural tube and cardiac neural crest defects in Pax3-mutant mouse embryos. This demonstrates that Pax3 regulates these processes by blocking p53 function. Here we investigated the mechanism by whic...

متن کامل

Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant.

Neural crest cells originating in the occipital region of the avian embryo are known to play a vital role in formation of the septum of the cardiac outflow tract and to contribute cells to the aortic arches, thymus, thyroid and parathyroids. This 'cardiac' neural crest sub-population is assumed to exist in mammals, but without direct evidence. In this paper we demonstrate, using RT-PCR and in s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 129 2  شماره 

صفحات  -

تاریخ انتشار 2002